
Midterm Review

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

Data Structures So Far

 Array List

 (Extendable) Array

 Node List

 Singly or Doubly Linked List

 Stack

 Array

 Singly Linked List

 Queue

 Array

 Singly or Doubly Linked List

 Priority Queue

 Unsorted doubly-linked list

 Sorted doubly-linked list

 Heap (array-based)

 Adaptable Priority Queue

 Sorted doubly-linked list with location-

aware entries

 Heap with location-aware entries

 Tree

 Linked Structure

 Binary Tree

 Linked Structure

 Array

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

Data Structures & Object-Oriented Design

 Definitions

 Principles of Object-Oriented Design

 Hierarchical Design in Java

 Abstract Data Types & Interfaces

 Casting

 Generics

 Pseudo-Code

Software Engineering

 Software must be:

 Readable and understandable

 Allows correctness to be verified, and software to be easily updated.

 Correct and complete

Works correctly for all expected inputs

 Robust

 Capable of handling unexpected inputs.

 Adaptible

 All programs evolve over time. Programs should be designed so that re-use,

generalization and modification is easy.

 Portable

 Easily ported to new hardware or operating system platforms.

 Efficient

Makes reasonable use of time and memory resources.

Seven Important Functions

 Seven functions that often

appear in algorithm analysis:

 Constant ≈ 1

 Logarithmic ≈ log n

 Linear ≈ n

 N-Log-N ≈ n log n

 Quadratic ≈ n2

 Cubic ≈ n3

 Exponential ≈ 2n

 In a log-log chart, the slope of

the line corresponds to the

growth rate of the function.

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

 properties of logarithms:

logb(xy) = logbx + logby

logb (x/y) = logbx - logby

logbx
a = alogbx

logba = logxa/logxb

 properties of exponentials:

a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a log
a

b

bc = a c*log
a

b

Summations

Logarithms and Exponents

Existential and universal operators

Proof techniques

Basic probability

Some Math to Review

$g"b Loves(b, g)

"g$b Loves(b, g)

• existential and universal
operators

Definition of “Big Oh”

, 0 00 : , () ()c n n n f n cg n    

()f n

()g n

()cg n

n

() (())f n O g n

Arithmetic Progression

 The running time of

prefixAverages1 is

O(1 + 2 + …+ n)

 The sum of the first n

integers is n(n + 1) / 2

 There is a simple visual

proof of this fact

 Thus, algorithm

prefixAverages1 runs in

O(n2) time
0

1

2

3

4

5

6

7

1 2 3 4 5 6

Relatives of Big-Oh

big-Omega

 f(n) is Ω(g(n)) if there is a constant c > 0

and an integer constant n0 ≥ 1 such that

f(n) ≥ c•g(n) for n ≥ n0

big-Theta

 f(n) is Θ(g(n)) if there are constants c1 > 0
and c2 > 0 and an integer constant n0 ≥ 1
such that c1•g(n) ≤ f(n) ≤ c2•g(n) for n ≥ n0

Time Complexity of an Algorithm

 O(n2): For any input size n ≥ n0, the algorithm takes

no more than cn2 time on every input.

 Ω(n2): For any input size n ≥ n0, the algorithm takes at

least cn2 time on at least one input.

 θ (n2): Do both.

The time complexity of an algorithm is

the largest time required on any input

of size n. (Worst case analysis.)

Time Complexity of a Problem

 O(n2): Provide an algorithm that solves the problem in no more than

this time.

 Remember: for every input, i.e. worst case analysis!

 Ω(n2): Prove that no algorithm can solve it faster.

 Remember: only need one input that takes at least this long!

 θ (n2): Do both.

The time complexity of a problem is

the time complexity of the fastest

algorithm that solves the problem.

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

Arrays

Arrays

Array: a sequence of indexed components with

the following properties:

 array size is fixed at the time of array’s construction

int[] numbers = new int [10];

 array elements are placed contiguously in memory

address of any element can be calculated directly as its offset

from the beginning of the array

 consequently, array components can be efficiently inspected or

updated in O(1) time, using their indices

randomNumber = numbers[5];

numbers[2] = 100;

Arrays in Java

 Since an array is an object, the name of the array is actually a

reference (pointer) to the place in memory where the array is stored.

 reference to an object holds the address of the actual object

 Example [arrays as objects]

int[] A={12, 24, 37, 53, 67};

int[] B=A;

B[3]=5;

 Example [cloning an array]

int[] A={12, 24, 37, 53, 67};

int[] B=A.clone();

B[3]=5;

12 24 37 53 67

12 24 37 5 67

12 24 37 53 67

12 24 37 53 67

12 24 37 53 67

12 24 37 5 67

A

B

A

B

A

B

A

B

Example

Example [2D array in Java = array of arrays]

int[][] nums = new int[5][4];

int[][] nums;

nums = new int[5][];

for (int i=0; i<5; i++) {

nums[i] = new int[4];

}

Array Lists

The Array List ADT (§6.1)

 The Array List ADT extends the notion of array by storing
a sequence of arbitrary objects

 An element can be accessed, inserted or removed by
specifying its rank (number of elements preceding it)

 An exception is thrown if an incorrect rank is specified
(e.g., a negative rank)

The Array List ADT

public interface IndexList<E> {

/** Returns the number of elements in this list */

public int size();

/** Returns whether the list is empty. */

public boolean isEmpty();

/** Inserts an element e to be at index I, shifting all elements after this. */

public void add(int I, E e) throws IndexOutOfBoundsException;

/** Returns the element at index I, without removing it. */

public E get(int i) throws IndexOutOfBoundsException;

/** Removes and returns the element at index I, shifting the elements after this. */

public E remove(int i) throws IndexOutOfBoundsException;

/** Replaces the element at index I with e, returning the previous element at i. */

public E set(int I, E e) throws IndexOutOfBoundsException;

}

Performance

 In the array based implementation

The space used by the data structure is O(n)

size, isEmpty, get and set run in O(1) time

add and remove run in O(n) time

 In an add operation, when the array is full,
instead of throwing an exception, we could
replace the array with a larger one.

 In fact java.util.ArrayList implements this
ADT using extendable arrays that do just
this.

Doubling Strategy Analysis

 We replace the array k = log2 n times

 The total time T(n) of a series of n add(o)
operations is proportional to

n + 1 + 2 + 4 + 8 + …+ 2k = n + 2k + 1 -1 = 2n -
1

 Thus T(n) is O(n)

 The amortized time of an add operation is
O(1)!

geometric series

1

2

1

4

8

Recall: r i

i =0

n

å =
1- r n+1

1- r

æ

è
ç

ö

ø
÷

Stacks

Chapter 5.1

The Stack ADT

 The Stack ADT stores
arbitrary objects

 Insertions and deletions
follow the last-in first-out
scheme

 Think of a spring-loaded
plate dispenser

 Main stack operations:

 push(object): inserts an
element

 object pop(): removes and
returns the last inserted
element

 Auxiliary stack

operations:

 object top(): returns the

last inserted element

without removing it

 integer size(): returns the

number of elements

stored

 boolean isEmpty():

indicates whether no

elements are stored

Array-based Stack

 A simple way of
implementing the
Stack ADT uses an
array

 We add elements
from left to right

 A variable keeps
track of the index of
the top element

S

0 1 2 t

…

Algorithm size()

return t + 1

Algorithm pop()

if isEmpty() then

throw EmptyStackException

else

t t - 1

return S[t + 1]

Queues

Chapters 5.2-5.3

Array-Based Queue

 Use an array of size N in a circular fashion

 Two variables keep track of the front and rear

f index of the front element

r index immediately past the rear element

 Array location r is kept empty

Q

0 1 2 rf

normal configuration

Q

0 1 2 fr

wrapped-around configuration

Queue Operations

We use the

modulo operator

(remainder of

division)

Algorithm size()

return (N - f + r) mod N

Algorithm isEmpty()

return (f = r)

Q

0 1 2 rf

Q

0 1 2 fr

 Note: N - f + r = (r + N) - f

Linked Lists

Chapters 3.2 – 3.3

Singly Linked List (§ 3.2)

 A singly linked list is a
concrete data structure
consisting of a sequence
of nodes

 Each node stores

 element

 link to the next node

next

elem node

A B C D

Æ

Running Time

 Adding at the head is O(1)

 Removing at the head is O(1)

 How about tail operations?

Doubly Linked List

 Doubly-linked lists allow more flexible list management (constant

time operations at both ends).

 Nodes store:

 element

 link to the previous node

 link to the next node

 Special trailer and header (sentinel) nodes

prev next

elem

trailerheader nodes/positions

elements

node

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

Iterators

 An Iterator is an object that enables you to traverse

through a collection and to remove elements from the

collection selectively, if desired.

 You get an Iterator for a collection by calling its iterator

method.

 Suppose collection is an instance of a Collection.

Then to print out each element on a separate line:

Iterator<E> it = collection.iterator();

while (it.hasNext())

System.out.println(it.next());

http://java.sun.com/javase/7/docs/api/java/util/Iterator.html

Iterable

Collection

Abstract

Collection
Queue

List

Abstract

Queue

Priority

Queue Array

List

Abstract

List

Vector

Stack

Linked

List

Abstract

Sequential

List

Interface

Abstract Class

Class

The Java Collections Framework (Ordered Data Types)

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

Linear Recursion Design Pattern

 Test for base cases

 Begin by testing for a set of base cases (there should be at least

one).

 Every possible chain of recursive calls must eventually reach a

base case, and the handling of each base case should not use

recursion.

 Recurse once

 Perform a single recursive call. (This recursive step may involve

a test that decides which of several possible recursive calls to

make, but it should ultimately choose to make just one of these

calls each time we perform this step.)

 Define each possible recursive call so that it makes progress

towards a base case.

Binary Recursion

Binary recursion occurs whenever there are

two recursive calls for each non-base case.

Example 1: The Fibonacci Sequence

Formal Definition of Rooted Tree

 A rooted tree may be empty.

 Otherwise, it consists of

 A root node r

 A set of subtrees whose roots are the children of r

subtree

r

B DC

G HE F

I J K

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

subtree

Tree Terminology

 Root: node without parent (A)

 Internal node: node with at least one child

(A, B, C, F)

 External node (a.k.a. leaf): node without

children (E, I, J, K, G, H, D)

 Ancestors of a node: parent,

grandparent, grand-grandparent, etc.

 Descendant of a node: child, grandchild,

grand-grandchild, etc.

 Siblings: two nodes having the same

parent

 Depth of a node: number of ancestors

(excluding self)

 Height of a tree: maximum depth of any

node (3)

 Subtree: tree consisting of a node and its

descendants

A

B DC

G HE F

I J K

Position ADT

The Position ADT models the notion of place
within a data structure where a single object is
stored

 It gives a unified view of diverse ways of storing
data, such as

a cell of an array

a node of a linked list

a node of a tree

 Just one method:

object element(): returns the element stored at the
position

Tree ADT

 We use positions to abstract nodes

 Generic methods:

 integer size()

 boolean isEmpty()

 Iterator iterator()

 Iterable positions()

 Accessor methods:

 position root()

 position parent(p)

 positionIterator children(p)

 Query methods:

 boolean isInternal(p)

 boolean isExternal(p)

 boolean isRoot(p)

 Update method:

 object replace(p, o)

 Additional update methods may

be defined by data structures

implementing the Tree ADT

Preorder Traversal

 A traversal visits the nodes of a

tree in a systematic manner

 In a preorder traversal, a node is

visited before its descendants

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock

Fraud

2.2 Ponzi

Scheme
1.1 Greed 1.2 Avidity

2.3 Bank

Robbery

1

2

3

5

4
6 7 8

9

Algorithm preOrder(v)

visit(v)

for each child w of v

preOrder (w)

Postorder Traversal

 In a postorder traversal, a

node is visited after its

descendants

Algorithm postOrder(v)

for each child w of v

postOrder (w)

visit(v)

cs16/

homeworks/
todo.txt

1K
programs/

DDR.java

10K

Stocks.java

25K

h1c.doc

3K

h1nc.doc

2K

Robot.java

20K

9

3

1

7

2 4 5 6

8

Properties of Proper Binary Trees

 Notation

n number of nodes

e number of external nodes

i number of internal nodes

h height

 Properties:

 e = i + 1

 n = 2e - 1

 h ≤ i

 h ≤ (n - 1)/2

 e ≤ 2h

 h ≥ log2e

 h ≥ log2(n + 1) - 1

BinaryTree ADT

The BinaryTree ADT extends the Tree ADT,

i.e., it inherits all the methods of the Tree ADT

Additional methods:

position left(p)

position right(p)

boolean hasLeft(p)

boolean hasRight(p)

Update methods may be defined by data

structures implementing the BinaryTree ADT

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

Priority Queue ADT

 A priority queue stores a collection of entries

 Each entry is a pair (key, value)

 Main methods of the Priority Queue ADT

 insert(k, x) inserts an entry with key k and value x

 removeMin() removes and returns the entry with smallest key

 Additional methods

 min() returns, but does not remove, an entry with smallest key

 size(), isEmpty()

 Applications:

 Process scheduling

 Standby flyers

Entry ADT

 An entry in a priority
queue is simply a key-
value pair

 Methods:

 key(): returns the key for this
entry

 value(): returns the value for
this entry

 As a Java interface:

/**

* Interface for a key-value

* pair entry

**/

public interface Entry {

public Object key();

public Object value();

}

Comparator ADT

 A comparator encapsulates the action of comparing two
objects according to a given total order relation

 A generic priority queue uses an auxiliary comparator

 The comparator is external to the keys being compared

 When the priority queue needs to compare two keys, it
uses its comparator

 The primary method of the Comparator ADT:

 compare(a, b):

Returns an integer i such that

 i < 0 if a < b

 i = 0 if a = b

 i > 0 if a > b

 an error occurs if a and b cannot be compared.

Sequence-based Priority Queue

 Implementation with an

unsorted list

 Performance:

 insert takes O(1) time since

we can insert the item at

the beginning or end of the

sequence

 removeMin and min take

O(n) time since we have to

traverse the entire

sequence to find the

smallest key

 Implementation with a

sorted list

 Performance:

 insert takes O(n) time since

we have to find the right

place to insert the item

 removeMin and min take

O(1) time, since the smallest

key is at the beginning

4 5 2 3 1 1 2 3 4 5

Is this tradeoff inevitable?

Heaps

 Goal:

 O(log n) insertion

O(log n) removal

 Remember that O(log n) is almost as good as O(1)!

 e.g., n = 1,000,000,000  log n ≅ 30

 There are min heaps and max heaps. We will assume

min heaps.

Min Heaps

 A min heap is a binary tree storing keys at its nodes and

satisfying the following properties:

 Heap-order: for every internal node v other than the root

 key(v) ≥ key(parent(v))

 (Almost) complete binary tree: let h be the height of the heap

 for i = 0, … , h - 1, there are 2i nodes of depth i

at depth h  1

 the internal nodes are to the left of the external nodes

 Only the rightmost internal node may have a single child 2

65

79

 The last node of a heap is the

rightmost node of depth h

Upheap

 After the insertion of a new key k, the heap-order property may be

violated

 Algorithm upheap restores the heap-order property by swapping k

along an upward path from the insertion node

 Upheap terminates when the key k reaches the root or a node

whose parent has a key smaller than or equal to k

 Since a heap has height O(log n), upheap runs in O(log n) time

2

15

79 6

1

25

79 6

Downheap

 After replacing the root key with the key k of the last node, the

heap-order property may be violated

 Algorithm downheap restores the heap-order property by

swapping key k along a downward path from the root

 Note that there are, in general, many possible downward paths –

which one do we choose?

7

65

9

w

? ?

Downheap

 We select the downward path through the minimum-key nodes.

 Downheap terminates when key k reaches a leaf or a node whose

children have keys greater than or equal to k

 Since a heap has height O(log n), downheap runs in O(log n) time

7

65

9

w

5

67

9

w

Array-based Heap Implementation

 We can represent a heap with n keys
by means of an array of length n + 1

 Links between nodes are not explicitly
stored

 The cell at rank 0 is not used

 The root is stored at rank 1.

 For the node at rank i

 the left child is at rank 2i

 the right child is at rank 2i + 1

 the parent is at rank floor(i/2)

 if 2i + 1 > n, the node has no right child

 if 2i > n, the node is a leaf

2

65

79

2 5 6 9 7

1 2 3 4 50

 We can construct a heap

storing n keys using a

bottom-up construction with

log n phases

 In phase i, pairs of heaps

with 2i -1 keys are merged

into heaps with 2i+1-1 keys

 Run time for construction is

O(n).

Bottom-up Heap Construction

2i -1 2i -1

2i+1-1

Adaptable

Priority Queues

3 a

5 g 4 e

Additional Methods of the Adaptable Priority Queue ADT

 remove(e): Remove from P and return entry e.

 replaceKey(e,k): Replace with k and return the old key;

an error condition occurs if k is invalid (that is, k cannot

be compared with other keys).

 replaceValue(e,x): Replace with x and return the old

value.

Location-Aware Entries

 A locator-aware entry identifies and tracks the

location of its (key, value) object within a data

structure

List Implementation

 A location-aware list entry is an object storing

 key

 value

 position (or rank) of the item in the list

 In turn, the position (or array cell) stores the entry

 Back pointers (or ranks) are updated during swaps

trailerheader nodes/positions

entries

2 c 4 a 5 d 8 b

Heap Implementation

 A location-aware heap

entry is an object storing

 key

 value

 position of the entry in the

underlying heap

 In turn, each heap position

stores an entry

 Back pointers are updated

during entry swaps

4 a

2 d

6 b

8 g 5 e 9 c

Performance

 Times better than those achievable without location-aware

entries are highlighted in red:

Method Unsorted List Sorted List Heap

size, isEmpty O(1) O(1) O(1)

insert O(1) O(n) O(log n)

min O(n) O(1) O(1)

removeMin O(n) O(1) O(log n)

remove O(1) O(1) O(log n)

replaceKey O(1) O(n) O(log n)

replaceValue O(1) O(1) O(1)

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

Maps

 A map models a searchable collection of key-value
entries

 The main operations of a map are for searching,
inserting, and deleting items

 Multiple entries with the same key are not allowed

 Applications:

 address book

 student-record database

Performance of a List-Based Map

 Performance:

 put, get and remove take O(n) time since in the worst case

(the item is not found) we traverse the entire sequence to

look for an item with the given key

 The unsorted list implementation is effective only for

small maps

Hash Tables

 A hash table is a data structure that can be used to

make map operations faster.

 While worst-case is still O(n), average case is typically

O(1).

Polynomial Hash Codes

 Polynomial accumulation:

 We partition the bits of the key into a sequence of components of fixed
length (e.g., 8, 16 or 32 bits)

a0 a1 … an-1

 We evaluate the polynomial

p(z) = a0 + a1 z + a2 z
2 + … + an-1z

n-1 at a fixed value z, ignoring overflows

 Especially suitable for strings

 Polynomial p(z) can be evaluated in O(n) time using Horner’s rule:

 The following polynomials are successively computed, each from the previous

one in O(1) time

p0(z) = an-1

pi (z) = an-i-1 + zpi-1(z) (i = 1, 2, …, n -1)

 We have p(z) = pn-1(z)

Compression Functions

 Division:

 h2 (y) = y mod N

 The size N of the hash table is usually chosen to be a prime (on

the assumption that the differences between hash keys y are

less likely to be multiples of primes).

 Multiply, Add and Divide (MAD):

 h2 (y) = [(ay + b) mod p] mod N, where

p is a prime number greater than N

a and b are integers chosen at random from the interval [0, p – 1],

with a > 0.

Collision Handling

 Collisions occur when different elements are mapped to

the same cell

 Separate Chaining:

 Let each cell in the table point to a linked list of entries that map

there

 Separate chaining is simple, but requires additional memory

outside the table
Ø

Ø

Ø

0

1

2

3

4 451-229-0004 981-101-0004

025-612-0001

Open Addressing: Linear Probing

 Open addressing: the colliding

item is placed in a different cell of

the table

 Linear probing handles collisions

by placing the colliding item in the

next (circularly) available table cell

 Each table cell inspected is

referred to as a “probe”

 Colliding items lump together, so

that future collisions cause a longer

sequence of probes

 Example:

 h(x) = x mod 13

 Insert keys 18, 41, 22, 44,

59, 32, 31, 73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

41 18 44 59 32 22 31 73

Open Addressing: Double Hashing

 Double hashing is an alternative open addressing method that uses

a secondary hash function h’(k) in addition to the primary hash

function h(x).

 Suppose that the primary hashing i=h(k) leads to a collision.

 We then iteratively probe the locations

(i + jh’(k)) mod N for j = 0, 1, … , N - 1

 The secondary hash function h’(k) cannot have zero values

 N is typically chosen to be prime.

 Common choice of secondary hash function h’(k):

 h’(k) = q - k mod q, where

 q < N

 q is a prime

 The possible values for h’(k) are

1, 2, … , q

Dictionary ADT
 The dictionary ADT models a

searchable collection of key-
element entries

 The main operations of a
dictionary are searching,
inserting, and deleting items

 Multiple items with the same key
are allowed

 Applications:

 word-definition pairs

 credit card authorizations

 Dictionary ADT methods:

 get(k): if the dictionary has at
least one entry with key k,
returns one of them, else, returns
null

 getAll(k): returns an iterable
collection of all entries with key k

 put(k, v): inserts and returns the
entry (k, v)

 remove(e): removes and returns
the entry e. Throws an exception
if the entry is not in the
dictionary.

 entrySet(): returns an iterable
collection of the entries in the
dictionary

 size(), isEmpty()

A List-Based Dictionary

 A log file or audit trail is a dictionary implemented by means of an

unsorted sequence

 We store the items of the dictionary in a sequence (based on a doubly-

linked list or array), in arbitrary order

 Performance:

 insert takes O(1) time since we can insert the new item at the beginning or

at the end of the sequence

 find and remove take O(n) time since in the worst case (the item is not

found) we traverse the entire sequence to look for an item with the given

key

 The log file is effective only for dictionaries of small size or for

dictionaries on which insertions are the most common operations, while

searches and removals are rarely performed (e.g., historical record of

logins to a workstation)

Hash Table Implementation

 We can also create a hash-table dictionary

implementation.

 If we use separate chaining to handle collisions, then

each operation can be delegated to a list-based

dictionary stored at each hash table cell.

Ordered Maps and Dictionaries

 If keys obey a total order relation, can represent a map or

dictionary as an ordered search table stored in an array.

 Can then support a fast find(k) using binary search.

 at each step, the number of candidate items is halved

 terminates after a logarithmic number of steps

 Example: find(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

Loop Invariants

 Binary search can be implemented as an iterative

algorithm (it could also be done recursively).

 Loop Invariant: An assertion about the current state

useful for designing, analyzing and proving the

correctness of iterative algorithms.

From the Pre-Conditions on the input instance

we must establish the loop invariant.

Establishing Loop Invariant

Maintain Loop Invariant
• By Induction the computation will

always be in a safe location.

(0)

, ()

, () (1)

S

i S i

i S i S i

 



  

   + 

Ending The Algorithm

 Define Exit Condition

 Termination: With sufficient progress,

the exit condition will be met.

 When we exit, we know

 exit condition is true

 loop invariant is true

from these we must establish

the post conditions.

Exit

Exit

0 km Exit

Topics on the Midterm

 Data Structures & Object-Oriented Design

 Run-Time Analysis

 Linear Data Structures

 The Java Collections Framework

 Recursion

 Trees

 Priority Queues & Heaps

 Maps, Hash Tables & Dictionaries

 Iterative Algorithms & Loop Invariants

